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Term Project Updated Due Date

• Because of Holiday weekend, date is now
midnight April 25



A Key Deliverable!

Model scope/boundary
selection.
Model time horizon
Identification of
key variables
Reference modes for
explanation

Causal loop diagrams
Stock & flow diagrams
Policy structure
diagrams

Specification of

•Parameters

•Quantitative causal
relations

•Decision rules

Initial conditions

Reference mode
reproduction

Matching of
intermediate time
series

Matching of
observed data point

Constrain to sensible
bounds
Structural sensitivity
analysis

Specification &
investigation of
intervention scenarios
Investigation of
hypothetical external
conditions

Cross-scenario
comparisons (e.g. CEA)

Parameter sensitivity
analysis

Cross-validation

Robustness&extreme case
tests

Unit checking
Problem domain tests

Learning
environm
ents/Mic
roworlds
/flight
simulator
s

Group model building

Some elements adapted from H. Taylor (2001)



Sources for Parameter Estimates

• Surveillance data

• Controlled trials

• Outbreak data

• Clinical reports data

• Intervention
outcomes studies

• Calibration to historic
data

• Expert judgement

• Metaanalyses

Anderson & May



Introduction of Parameter Estimates
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Sensitivity Analyses

• Same relative or absolute uncertainty in
different parameters may have hugely
different effect on outcomes or decisions

• Help identify parameters that strongly affect
– Key model results

– Choice between policies

• We place more emphasis in parameter
estimation into parameters exhibiting high
sensitivity



Dealing with Data Gradients
• Often we don’t have reliable information on some

parameters, but do have other data
– Some parameters may not be observable, but some

closely related observable data is available

– Sometimes the data doesn’t have the detailed
breakdown needed to specifically address one
parameter

• Available data could specify sum of a bunch of flows or stocks

• Available data could specify some function of several
quantities in the model (e.g. prevalence)

• Some parameters may implicitly capture a large set
of factors not explicitly represented in model

• There are two big ways of dealing with this:
manually “backing out”, and automated calibration



“Backing Out”

• Sometimes we can manually take several
aggregate pieces of data, and use them to
collectively figure out what more detailed data
might be

• Frequently this process involves imposing some
(sometimes quite strong) assumptions
– Combining data from different epidemiological

contexts (national data used for provincial study)

– Equilibrium assumptions (e.g. assumes stock is in
equilibrium. Cf deriving prevalence from incidence)

– Independence of factors (e.g. two different risk
factors convey independent risks)



Example

• Suppose we seek to find out the sex-specific prevalence
of diabetes in some population

• Suppose we know from published sources
– The breakdown of the population by sex (cM, cF)

– The population-wide prevalence of diabetes (pT)

– The prevalence rate ratio of diabetes in women when
compared to men (rrF)

• We can “back out” the sex-specific prevalence from
these aggregate data (pF, pM)

• Here we can do this “backing out” without imposing
assumptions



Backing Out

# male diabetics + # female diabetics = # diabetics

(pM* cM) + (pF* cF) = pT*(cM+cF)

• Further, we know that pF / pM =rrF => pF = pM * rrF

• Thus

(pM* cM) + ((pM * rrF)* cF) = pT*(cM+cF)

pM*(cM + rrF* cF) = pT*(cM+cF)

• Thus

– pM = pT*(cM+cF) / (cM + rrF* cF)

– pF = pM * rrF = rrF * pT*(cM+cF) / (cM + rrF* cF)



Disadvantages of “Backing Out”

• Backing out often involves questionable
assumptions (independence, equilibrium, etc.)

• Sometimes a model is complex, with several
related known pieces

– Even thought we may know a lot of pieces of
information, it would be extremely complex (or
involve too many assumptions) to try to back out
several pieces simultaneously



Another Example: Joint & Marginal
Prevalence

Rural Urban

Male pMR pMU pM

Female pFR pMU pF

pR pU

Perhaps we know
•The count of people in each { Sex, Geographic } category
•The marginal prevalences (pR, pU , pM , pF)

We need at least one more constraint
•One possibility: assume pMR / pMU = pR / pU

We can then derive the prevalences in each { Sex, Geographic } category



Calibration: “Triangulating” from Diverse
Data Sources

• Calibration involves “tuning” values of less well
known parameters to best match observed data
– Often try to match against many time series or pieces of

data at once

– Idea is trying to get the software to answer the question:
“What must these (less known) parameters be in order
to explain all these different sources of data I see”

• Observed data can correspond to complex
combination of model variables, and exhibit
“emergence”

• Frequently we learn from this that our model
structure just can’t produce the patterns!



Calibration
• Calibration helps us find a reasonable

(specifics for) “dynamic hypothesis” that
explains the observed data

– Not necessarily the truth, but probably a
reasonably good guess – at the least, a consistent
guess

• Calibration helps us leverage the large
amounts of diffuse information we may have
at our disposal, but which cannot be used to
directly parameterize the model

• Calibration helps us falsify models



Calibration: A Bit of the How

• Calibration uses a (global) optimization algorithm
to try to adjust unknown parameters so that it
automatically matches an arbitrarily large set of
data

• The data (often in the form of time series) forms
constraints on the calibration

• The optimization algorithm will run the model
many (minimally, thousands, typically 100K or
more) times to find the “best” match for all of
the data



Required Information for Calibration

• Specification of what to match (and how much to
care about each attempted match)
– Involves an “error function” ( “penalty function”, “energy

function”) that specifies “how far off we are” for a given
run (how good the fit is)

– Alternative: specify “payoff function” (“objective
function”)

• A statement of what parameters to vary, and over
what range to vary them (the “parameter space”)

• Characteristics of desired tuning algorithm
– Single starting point of search?



Envisioning “Parameter Space”

β

μ

τ

For each point in this space, there
will be a certain “goodness of fit”
of the model to the collective data



Assessing Model “Goodness of Fit”

• To improve the “goodness of fit” of the model to
observed data, we need to provide some way of
quantifying it!

• Within the model, we

– For each historic data, calculate discrepancy of model

• Figure out absolute value of discrepancy from comparing

– Historic Data

– The model’s calculations

• Convert the above to a fractional value (dividing by historic
data)

– Sum up these discrepancy



Characteristics of a
Desirable Discrepancy Metric

• Dimensionless: We wish to be able to add discrepancies
together, regardless of the domain of origin of the data

• Weighted: Reflecting different pedigrees of data, we’d like to
be able to weigh some matches more highly than others

• Analytic: We should be able to differentiate the function one
or more times

• Concave: Two small discrepancies of size a should be
considered more desirable than having one big discrepancy of
size 2a for one, and no discrepancy at all for the other.

• Symmetric: Being off by a factor of two should have the same
weight regardless of whether we are 2x or ½x

• Non-negative: No discrepancy should cancel out others!

• Finite: Finite inputs should yield infinite discrepancies



A Good Discrepancy Function
(Assuming non-negative h & m)
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Only zero if h=m=0.
Denominator is only very small if numerator is as well!

Exponent
>1  concave with respect to h-m

Division  Dimensionless
(Judging by proportional error, not absolute)

Taking average in denominator (together w/squaring
of result) ensures symmetry with respect to h&m



Considerations for Weighting

• Purpose of model: If we “care” more about a
match with respect to some variables, we can more
heavily weight matches for those variables

• Uncertainty in estimate: The more uncertain the
estimate of the quantity, the lower the weight

• Whether data exists: no data => weight should be
zero


